Inflammatory response of lung macrophages and epithelial cells after exposure to redox active nanoparticles: effect of solubility and antioxidant treatment.

نویسندگان

  • Martin Urner
  • Andreas Schlicker
  • Birgit Roth Z'graggen
  • Alexander Stepuk
  • Christa Booy
  • Karl P Buehler
  • Ludwig Limbach
  • Corinne Chmiel
  • Wendelin J Stark
  • Beatrice Beck-Schimmer
چکیده

The effects of an exposure to three mass-produced metal oxide nanoparticles-similar in size and specific surface area but different in redox activity and solubility-were studied in rat alveolar macrophages (MAC) and epithelial cells (AEC). We hypothesized that the cell response depends on the particle redox activity and solubility determining the amount of reactive oxygen species formation (ROS) and subsequent inflammatory response. MAC and AEC were exposed to different amounts of Mn3O4 (soluble, redox-active), CeO2 (insoluble, redox-active), and TiO2 (insoluble, redox-inert) up to 24 h. Viability and inflammatory response were monitored with and without coincubation of a free-radical scavenger (trolox). In MAC elevated ROS levels, decreased metabolic activity and attenuated inflammatory mediator secretion were observed in response to Mn3O4. Addition of trolox partially resolved these changes. In AEC, decreased metabolic activity and an attenuated inflammatory mediator secretion were found in response to CeO2 exposure without increased production of ROS, thus not sensitive to trolox administration. Interestingly, highly redox-active soluble particles did not provoke an inflammatory response. The data reveal that target and effector cells of the lung react in different ways to particle exposure making a prediction of the response depending on redox activity and intracellular solubility difficult.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of silica nanoparticles cytotoxicity (20-40 nm) on cancerous epithelial cell (A549) and fibroblasts cells of human normal lung fibroblast (MRC5)

Introduction: Silica nanoparticles have received more attraction in medical and industrial applications due to their unique properties such as small size, the possibility of surface functionalization, ease of production, and low cost. So, it is necessary to study the respiratory toxicity of occupational exposure due to the production and increasing use of silica nanoparticles, especially in the...

متن کامل

Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo

BACKGROUND This study evaluates the time-dependent pro-inflammatory response of the model human lung epithelial cells (A549) to industrially relevant zinc oxide nanoparticles (ZnO NPs). In terms of toxicity, ZnO-NPs are categorised into the group of high toxicity nanomaterials. However information on pro-inflammatory potential of these NPs at sub-toxic concentrations is limited. Understanding h...

متن کامل

Anti-inflammatory effect of Yu-Ping-Feng-San via TGF-β1 signaling suppression in rat model of COPD

Objective(s): Yu-Ping-Feng-San (YPFS) is a classical traditional Chinese medicine that is widely used for treatment of the diseases in respiratory systems, including chronic obstructive pulmonary disease (COPD) recognized as chronic inflammatory disease. However, the molecular mechanism remains unclear. Here we detected the factors involved in transforming growth factor beta 1 (TGF-β1)/Smad2 si...

متن کامل

The Protective Effect of Antioxidant and Anti-inflammatory Nanoparticles in Renal Ischemia-Reperfusion Damage

Background& objectives: Renal ischemia-reperfusion (IR) damage occurs during renal transplantation in end-stage renal disease (ESRD) patients which activate immune responses. Inflammatory responses by increased levels of cytokines can lead to acute kidney injury (AKI) that contributes to the loss of renal grafts and graft dysfunction. The purpose of this study was to review the therapeutic effe...

متن کامل

بررسی تاثیر نانو‌ذره اکسید‌منیزیم بر تغییرات مرفولوژی سلول‌های پنوموسیت ریه موش صحرایی در محیط in vitro

Background: Direct observation of cell behavior is involved in vivo and ex vivo study. The aim of this study was to investigate the effect of magnesium oxide nanoparticles on isolated rat lung alveolar pneumocyte cells, after severance and determine the amount of no-effect nanoparticles. Methods: In this lab trial study, in addition to determine the viability of isolated cells with Trepan blue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 48 23  شماره 

صفحات  -

تاریخ انتشار 2014